سفارش تبلیغ
صبا ویژن
در مقاله حاضر ابتدا به پدیده هزاره سوم – ننوتکنولوژی بطور اجمالی پرداخته خواهد شد، پس از معرفی و آشنایی با این پدیده و اشاره مختصر به کاربردهای آن در کلیه علوم و فنون، منحصراً زمینه‌های کاربردی آن در صنعت سیمان بررسی خواهد شد یکی از مهمترین مباحث روز در مورد سیمان و ننوتکنولوژی، مسئله کامپوزیتهای سیمان و کربن ننوتیوبها می‌باشد در مجموعه تحقیق حاضر
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 7 کیلو بایت
تعداد صفحات فایل 10
بررسی ننوتکنولوژی و صنعت سیمان و کربن ننوتیوبها

فروشنده فایل

کد کاربری 8044

 

چکیده

در مقاله حاضر ابتدا به پدیده هزاره سوم – ننوتکنولوژی- بطور اجمالی پرداخته خواهد شد، پس از معرفی و آشنایی با این پدیده و اشاره مختصر به کاربردهای آن در کلیه علوم و فنون، منحصراً زمینه‌های کاربردی آن در صنعت سیمان بررسی خواهد شد. یکی از مهمترین مباحث روز در مورد سیمان و ننوتکنولوژی، مسئله کامپوزیتهای سیمان و کربن ننوتیوبها می‌باشد. در مجموعه تحقیق حاضر پس از معرفی این پدیده و ذکر مختصر کاربردهای آن در کلیه زمینه‌های مختلف موجود و زمینه‌هایی که کاربردهای آن هنوز در حد بحث و بررسی می‌باشد، کربن، کربن ننوفایبرز و کربن ننوتیوبها و طیف وسیع کاربردهای آن بخصوص در صنعت سیمان مورد مطالعه و بررسی قرار گرفته است.

 

اثر تغییر ترکیب بر خواص سیمان‌های بیواکتیواستخوان

بر پایه شیشه و شیشه – سرامیکهای بیواکتیو سیستم

Mgo- CaO- P2O5- SiO2

زهرا محمدی – عبدالرضا مسگر

دانشگاه علم و صنعت ایران

چکیده

در این مقاله، امکان تشکیل سیمان از شیشه و شیشه- سرامیکهای سیستم Mgo- CaO- P2O5- SiO2 و همچنین اثر جایگزینی SiO2 به جای بر رفتار گیرش و استحکام فشاری سیمانهای تهیه شده مورد مطالعه قرار گرفته است. با افزودن محلول فسفاتی به پودر شیشه و شیشه- سرامیکهای تهیه شده خمیری بدست می‌آید که بر اساس جزء تشکیل دهنده قسمت جامد سیمان در مدت 14- 2 دقیقه دچار گیرش (اولیه و نهایی) می‌شود. واکنش گیرش به تشکیل فاز کلسیم آمونیوم فسفات هیدراته نسبت داده می‌شود. با غوطه‌وری سیمانهای حاصل از شیشه و شیشه- سرامیکهای مورد بررسی در محلول شبیه‌سازی شده بدن (SBF)، استحکام فشاری سیمان به دلیل تشکیل هیدروکسی آپاتیت می‌باشد. فوق اشباع بودن SBF نسبت به تشکیل فاز هیدروکسی آپاتیت و همچنین وجود مواضع مناسب جوانه‌زنی روی سطوح شیشه و شیشه سرامیکها سبب می گردد تا در اثر غوطه‌وری سیمان در SBF، نسبت به تشکیل فاز هیدروکسی آپاتیت و همچنین وجود مواضع مناسب جوانه‌زنی روی سطوح شیشه و شیشه سرامیکها سبب می‌گردد تا در اثر غوطه‌وری سیمان در SBF ،

فاز هیدروکسی آپاتیت تشکیل گردد. با عملیات حرارتی پودر شیشه‌ها، دو نوع شیشه- سرامیک حاوی فازهای بلوری آپاتیت و آپاتیت/ ولاستونیت حاصل می‌شود. جایگزینی به جای تأثیری بر زمان گیرش اولیه و نهایی سیمانهای حاصل از شیشه و شیشه سرامیکهای مورد بررسی ندارد. کاهش میزان فاز شیشه، پایین‌تر بودن استحکام فشاری قبل از غوطه‌وری در SBF را به دنبال دارد. سرعت افزایش استحکام فشاری سیمانها در زمانهای اولیه غوطه‌وری در، SBF را به دنبال دارد. سرعت افزایش استحکام فشاری سیمانها در زمانهای اولیه غوطه‌وری در، در سیستم شیشه سرامیکها کندتر از سیستم شیشه‌ها است هر چند که پس از گذشت یک هفته، میزان استحکام فشاری شیشه سرامیکها به دلیل حضور فاز و لاستونیت، بالاتر از شیشه‌ها قرار می‌گیرد. سیمانهای تهیه شده از شیشه برای کاربردهای نیازمند گیرش و سخت‌شدن نسبتاً سریع و انواع شیشه‌ سرامیک برای کاربردهای نیازمند استحکام بالاتر در زمانهای طولانی‌تر مناسب خواهد بود.

کلمات کلیدی: سیمان بیواکتیو استخوان، شیشه و شیشه سرامیکهای بیواکتیو، رفتار گیرش، استحکام فشاری

 

استفاده از جریان جانبی رانش دهنده و پرتاب کننده

ذرات در غبارگیری از کانال‌ها

ذرات در غبارگیری از کانال‌ها

 

 






تاریخ : سه شنبه 96/4/6 | 9:22 عصر | نویسنده : خلوتگاه | نظرات ()
اعمال ولتاژ با پلاریته موافق باعث عبور جریان از یک پیوند PN می شود و چنانچه پلاریته ولتاژتغییر کند جریانی از مدار عبور نخواهد کرد
دسته بندی برق
فرمت فایل doc
حجم فایل 36 کیلو بایت
تعداد صفحات فایل 15
بررسی انواع ترانزیستورها

فروشنده فایل

کد کاربری 8044

انواع ترانزیستورها :

 

ترانزیستورها:

قطعه

علامت

مفهوم علامت

ترانزیستور NPN

 

ترانزیستور جریان را تقویت می کند کاربرد ترانزیستور بسته به نوع مدار تقویت یا سوئیچ می باشد.

ترانزیستور PN

 

ترانزیستور جریان را تقویت می کند کاربرد ترانزیستور بسته به نوع مدار تقویت یا سوئیچ می باشد.

فتو ترانزیستور

 

یک ترانزیستور که به نور ( معولا مادون قرمز) حساس می باشد.

 

 

ترانزیستور چگونه کار می کند

 

اعمال ولتاژ با پلاریته موافق باعث عبور جریان از یک پیوند PN می شود و چنانچه پلاریته ولتاژتغییر کند جریانی از مدار عبور نخواهد کرد.

اگر ساده بخواهیم به موضوع نگاه کنیم عملکرد یک ترانزیستور را می توان تقویت جریان دانست. مدار منطقی کوچکی را در نظر بگیرید که تحت شرایط خاص در خروجی خود جریان بسیار کمی را ایجاد می کند. شما بوسیله یک ترانزیستور می توانید این جریان را تقویت کنید و سپس از این جریان قوی برای قطع و وصل کردن یک رله برقی استفاده کنید.

موارد بسیاری هم وجود دارد که شما از یک ترانزیستور برای تقویت ولتاژ استفاده می کنید. بدیهی است که این خصیصه مستقیما" از خصیصه تقویت جریان این وسیله به ارث می رسد کافی است که جریان وردی و خروجی تقویت شده را روی یک مقاومت بیندازیم تا ولتاژ کم ورودی به ولتاژ تقویت شده خروجی تبدیل شود.

جریان ورودی ای که که یک ترانزیستور می تواند آنرا تقویت کند باید حداقل داشته باشد. چنانچه این جریان کمتر از حداقل نامبرده باشد ترانزیستور در خروجی خود هیچ جریانی را نشان نمی دهد. اما به محض آنکه شما جریان ورودی یک ترانزیستور را به بیش از حداقل مذکور ببرید در خروجی جریان تقویت شده خواهید دید. از این خاصیت ترانزیستور معمولا" برای ساخت سوییچ های الکترونیکی استفاده می شود.

 

از لحاظ ساختاری می توان یک ترانزیستور را با دو دیود مدل کرد.

اولین ترانزیستورها اشاره کردیم ترانزستورهای اولیه از دو پیوند نیمه هادی تشکیل شده اند و بر حسب آنکه چگونه این پیوند ها به یکدیگر متصل شده باشند می توان آنها را به دو نوع اصلی PNP یا NPN تقسیم کرد. برای درک نحوه عملکرد یک ترانزیستور ابتدا باید بدانیم که یک پیوند (Junction) نیمه هادی چگونه کار می کند.

در شکل اول شما یک پیوند نیمه هادی از نوع PN را مشاهده می کنید. که از اتصال دادن دو قطعه نیمه هادی P و N به یکدیگر درست شده است. نیمه هادی های نوع N دارای الکترونهای آزاد و نیمه هادی نوع P دارای تعداد زیادی حفره (Hole) آزاد می باشند. بطور ساده می توان منظور از حفره آزاد را فضایی دانست که در آن کمبود الکترون وجود دارد.

اگر به این تکه نیمه هادی از خارج ولتاژی بصورت آنچه در شکل نمایش داده می شود اعمال کنیم در مدار جریانی برقرار می شود و چنانچه جهت ولتاژ اعمال شده را تغییر دهیم جریانی از مدار عبور نخواهد کردچرا؟

این پیوند نیمه هادی عملکرد ساده یک دیود را مدل می کند. همانطور که می دانید یکی از کاربردهای دیود یکسوسازی جریان های متناوب می باشد. از آنجایی که در محل اتصال نیمه هادی نوع N به P معمولآ یک خازن تشکیل می شود پاسخ فرکانسی یک پیوند PN کاملآ به کیفیت ساخت و اندازه خازن پیوند بستگی دارد. به همین دلیل اولین دیودهای ساخته شده توانایی کار در فرکانسهای رادیویی - مثلآ برای آشکار سازی - را نداشتند. معمولآ برای کاهش این خازن ناخاسته، سطح پیوند را کاهش داده و آنرا به حد یک نقطه می رسانند

 

 

همانطور که می دانید دیود ها جریان الکتریکی را در یک جهت از خود عبور می دهند و در جهت دیگر در مقابل عبور جریان از خود مقاومت بالایی نشان می دهند. این خاصیت آنها باعث شده بود تا در سالهای اولیه ساخت این وسیله الکترونیکی، به آن دریچه یا Valve هم اطلاق شود.

از لحاظ الکتریکی یک دیود هنگامی عبور جریان را از خود ممکن می سازد که شما با برقرار کردن ولتاژ در جهت درست (+ به آند و - به کاتد) آنرا آماده کار کنید. مقدار ولتاژی که باعث میشود تا دیود شروع به هدایت جریان الکتریکی نماید ولتاژ آستانه یا (forward voltage drop) نامیده می شود که چیزی حدود 0.6 تا 0.7 ولت می باشد. به شکل اول توجه کنید که چگونه برای ولتاژهای مثبت - منظور جهت درست می باشد - تا قبل از 0.7 ولت دیود از خود مقاومت نشان می دهد و سپس به یکباره مقاومت خود را از دست می دهد و جریان را از خود عبور می دهد.

 

نماد فنی و دو نمونه از انواع دیوید اما هنگامی که شما ولتاژ معکوس به دیود متصل می کنید (+ به کاتد و - به آند) جریانی از دیود عبور نمی کند، مگر جریان بسیار کمی که به جریان نشتی یا Leakage معرف است که در حدود چند µA یا حتی کمتر می باشد. این مقدار جریان معمولآ در اغلب مدار های الکترونیکی قابل صرفنظر کردن بوده و تاثیر در رفتار سایر المانهای مدار نمیگذارد. اما نکته مهم آنکه تمام دیود ها یک آستانه برای حداکثر ولتاژ معکوس دارند که اگر ولتاژمعکوس بیش از آن شود دیوید می سوزد و جریان را در جهت معکوس هم عبور می دهد. به این ولتاژ آستانه شکست یا Breakdown گفته می شود.

در دسته بندی اصلی، دیودها را به سه قسمت اصلی تقسیم می کنند، دیودهای سیگنال (Signal) که برای آشکار سازی در رادیو بکار می روند و جریانی در حد میلی آمپر از خود عبور می دهند، دیودهای یکسوکننده (Rectifiers) که برای یکسوسازی جریانهای متناوب بکاربرده می شوند و توانایی عبور جریانهای زیاد را دارند و بالآخره دیود های زنر (Zener) که برای تثبیت ولتاژ از آنها استفاده می شود.

 






تاریخ : سه شنبه 96/4/6 | 9:22 عصر | نویسنده : خلوتگاه | نظرات ()
الف) قانون اهم مقدمه الف) بررسی قانون اهم بستگی ولتاژ سیم به مقاومت مدار و جریان ورودی از آن VIR که در آن V اختلاف پتانسیل سیم (ولت)، I و جریان عبوری (آمپر)، R مقاومت سیم (اهم) مداری مطابق شکل ببندید
دسته بندی برق
فرمت فایل doc
حجم فایل 903 کیلو بایت
تعداد صفحات فایل 16
بررسی قوانین اهم و کیرشهف

فروشنده فایل

کد کاربری 8044

بسمه تعالی

 

آزمایش اول- بررسی قوانیم اهم و کیرشهف

وسایل مورد نیاز: مقاومت های 100، 2k، 1k،200، 300 ،20k و مولتی متر

 الف) قانون اهم:

مقدمه:

الف) بررسی قانون اهم: بستگی ولتاژ سیم به مقاومت مدار و جریان ورودی از آن V=IR که در آن

V: اختلاف پتانسیل سیم (ولت)، I و جریان عبوری (آمپر)، R: مقاومت سیم (اهم)

مداری مطابق شکل ببندید.

با تغییر مقدار IS ، ولتاژ دوسر مقاومت را اندازه گرفته، منحنی این مقاومت را رسم نمائید.

 

ب) قانون جریان:

مداری مطابق شکل ببندید.

مقادیر I4,I3,I2,I1 را اندازه گرفته،

درستی قانون جریان را تحقیق نمائید.

1. چه رابطه ای بین هر یک از جریانهای جزئی I3,I2,I1 و جریان I وجود دارد؟

2. چه مقاومتی جایگزین مقاومتهای R3,R2,R1 کنیم تا جریان I بدون تغییر باقی بماند؟

3. چه نسبتی بین جریانهای I1 و I3وجود دارد؟

ج) قانون ولتاژ:

مداری مطابق شکل ببندید.

ولتاژ دو سر هر مقاومت را جداگانه اندازه گرفته،

ولتاژ هر منبع را به دست آورید.

4. قانون ولتاژ را بیان کنید.

5. چه رابطه ای بین هر یک از مقادیر VR3,VR2,VR1وVAB وجود دارد؟

6. چه نسبتی بین مقادیر VR2,VR1 وجود دارد؟

7. در مدار شکل مقابل چه تغییری پیشنهاد می‌کنید تا هر لامپ درست جریانی را که لازم دارد بکشد ؟

 

8. در شکل زیر جهت و مقدار جریانی را که از مقاومت می‌گذرد مشخص کنید. .

د) مقسم ولتاژ:

مداری مطابق شکل ببندید.

-A و قرار داده، ولتاژ دو سر RL

را به ازاء دو مقدار واندازه بگیرید.

-B و انتخاب و مجدداً ولتاژ دو سر RL را به ازاء همان مقادیر و اندازه بگیرید.

 

 

B: (R1=100 , R2=200)

VL

RL

 

300

600

A: (R1=200 , R2=400)

VL

RL

 

300

600

 

 

 

 

 

 

9. تغییرات VL در کدام حالت بیشتر است؟ چرا؟

  1. با فرض ثابت بودن RL و R2=2R1 رابطه کلی بین تغییرات VL و جریان منبع در حالت بی باری را بدست آورید. آیا با افزایش جریان بی باری تغییرات VL بیشتر خواهد شد یا کمتر؟

 

 

  1. در مدار شکل مقابل R2,R1 را به گونه‌ای انتخاب کنید که ولتاژ دوسر R2 در حالت بی باری برابر 6V و وقتی مصرف کننده وصل می‌شود بیش از 10% افت ننماید .

 

 

  1. اگر مقاومت داخلی ولتمتر باشد، در هر یک از مدارات شکل زیر ولتمتر چه عددی را نشان می‌دهد؟ چه نتیجه‌ای می‌گیرید؟ ( از رِنج 1 ولتمتر استفاده می‌شود)

 

 

بسمه تعالی

آزمایش دوم

تعیین مقاومت داخلی، قضایای تونن و لوزتن:

وسایل مورد نیاز: پتانسیومتر، مولتی متر، مقاومت های: 300 ، 1k ، 430

مقدمه:

اگر مدار را به صورت یک منبع ولتاژ واقعی معادل سازی کنیم مدار را معادل ؟؟؟ گویند و اگر مدار را به صورت منبع جریان واقعی معادل سازی کنیم آن را معادل ؟؟؟ گویند.

-A مداری مطابق شکل بسته با تغییر پتانسیومتر جریان مدار را تنظیم و ولتاژ متناظر با آن را در جدول یادداشت کنید.

20

15

10

5

0

IMA

 

 

 

 

 

VL(V)

 

1. منحنی تغییرات VL را برحسب I رسم کنید. به ازاء چه مقدار R ولتاژ به نصف مقدار حالت مدار باز کاهش می‌یابد؟ چرا؟

-B جریان اتصال کوتاه مدار( ) چقدر است؟

-C مقاومت داخلی منبع را از رابطه بدست آورید.

-D آزمایش را با منبع ایده‌آل تکرار کنید (مطابق شکل زیر)

 

20

15

10

5

0

IMA

 

 

 

 

 

VL(V)

 

 

2. منحنی تغییرات VL را برحسب I رسم کنید . آیا اختلافی بین مقادیر اندازه گرفته شده برای VL در این مرحله با مقادیر حاصل در (A) مشاهده می کنید؟

-E در این مرحله آزمایش را با منبع جریان ایده‌آل تکرار کنید. مدار را مطابق شکل زیر بسته پس از تکمیل جدول منحنی V-I را رسم کنید.

 

 

20

15

10

5

0

IMA

 

 

 

 

 

VL(V)

 

 

3. آزمایشهای مراحل (E), (D), (A) بیانهای ظاهراً متفاوت یک واقعیت است آنرا در یک جمله بیان کنید.

-F مداری مطابق شکل ببندید. VAB را در حالت مدار باز مساوی 6V تنظیم کنید. سپس جدول زیر را تکمیل و منحنی V-I را رسم کنید.

20

15

10

5

0

IMA

 

 

 

 

 

VL(V)

 

4. قضایای تونن و لوزتن را بیان کنید.

-G1,2 مقاومت معادل مدار فوق را از رابطه بدست آورید. سپس مدار را غیرفعال نموده، به روش زیر مقاومت معادل را بدست آورده با هم مقایسه کنید.

 

 

 

 

آزمایش سوم:

الف) قضیه انتقال حداکثر توان:

وسایل مورد نیاز: مقاومت های 300 ، 200 ، 180 ، 20 ، 10، مولتی متر

مداری مطابق شکل ببندید، VAB(O.C.)=6V تنظیم کنید و جدول زیر را تکمیل نمائید.

مقدمه:

جریان عناصر هوازی از مجموع آثار تک تک منابع در مدار حاصل می شود جمع آثار در مورد ولتاژ 2 سر هر عضو نیز صادق است ولی در مورد کمیتهایی که با مجذور جریان و ولتاژ متناسب هستند صدق نمی کند.

5. منحنی PL-RL را رسم کنید.

 

2K

1K

600

300

200

100

 

 

 

 

 

 

 

VL(V)

 

 

 

 

 

 

 

 

 

6. به ازاء چه مقدار RL، PL حداکثر مقدار را دارد؟ در این حالت VL چقدر است؟

 

7. در هر یک از مدارهای زیر Zl را چه مقدار انتخاب کنیم تا حداکثر توان به بار برسد؟

 

 

ب) قضیه جمع اثرها:

-A1 مداری مطابق شکل ببندید، ولتاژ دوسر منبع V1 را برابر 10V تنظیم و سپس جریان I را اندازه بگیرید. I=..?..MA

-A2 منبع V1 را از مدار خارج و جریان I را در

این حالت اندازه بگیرید. I2=..?..MA

-A3 منبع V1 را در مدار قرار داده، V2 را از مدار خارج کنید.

جریان اندازه گیری شده در این حالت را I1 بنامید. I1=..?..MA

8. آیا تساوی I=I1+I2 برقرار است؟

9. آیا در مورد هر مداری قضیه جمع اثرها صادق است؟

10. در مدار شکل زیر، با استفاده از قضیه جمع اثرها، جریانی را که از مقاومت بار می گذرد حساب کنید.

 

 

ج) قضیه تقابل «هم پاسخی» :

-A مداری مطابق شکل زیر ببندید و جریانی را که آمپرمتر نشان می‌دهد یادداشت کنید.

 


-B حال جای منبع و آمپرمتر را در مدار عوض کنید. آیا در جریانی که آمپرمتر نشان می دهد تغییری مشاهده می‌کنید؟

 

11. نتیجه را بیان کنید. آیا این نتیجه در همه موارد صادق است؟

 

آزمایش چهارم:

الف) خازن در مدار A.C

وسایل مورد نیاز: - خازن های 36nF و 18nF

-A مداری مطابق شکل زیر ببندید. با اندازه گیری IC,VC جدول زیر را تکمیل کنید.

 

 

IC Ma

VC

V

f

KHZ

C

nf

 

 

 

1

1

0.5

1

1

2.2

4.4

4.4

8.8

8.8

36

36

36

36

18

 

1. مقاومت 50Ω به چه منظور بکار رفته است؟

2. اثر تغییر فرکانس، تغییر ولتاژ و تغییر ظرفیت خازن را بررسی کنید.

-B مداری مطابق شکل زیر ببندید. ولتاژ دو سر منبع را در فرکانس 4.4KHZ برابر 140MV تنظیم کنید. در این حالت ولتاژ دو سر خازن و دو سر مقاومت را جداگانه اندازه بگیرید.

VR = …?....MV , VC = …?... MV

3. چه رابطه ای بین VR و VC و ولتاژ دو سر منبع وجود دارد؟

 

-C فرکانس منبع را به 2.2 KHZ کاهش دهید و مجدداً VR و VC را اندازه بگیرید.

VR = …?....MV , VC = …?... MV

 






تاریخ : سه شنبه 96/4/6 | 9:21 عصر | نویسنده : خلوتگاه | نظرات ()
از مهمترین منابع استفاده صلح آمیز از انرژی اتمی ، ساخت راکتورهای هسته‌ای جهت تولید برق می‌باشد راکتور هسته‌ای وسیله‌ای است که در آن فرآیند شکافت هسته‌ای بصورت کنترل شده انجام می‌گیرد در طی این فرآیند انرژی زیاد آزاد می‌گردد به نحوی که مثلا در اثر شکافت نیم کیلوگرم اورانیوم انرژی معادل بیش از 1500 تن زغال سنگ بدست می‌آید هم اکنون در سراسر جهان ، را
دسته بندی برق
فرمت فایل doc
حجم فایل 61 کیلو بایت
تعداد صفحات فایل 13
بررسی برق هسته ای

فروشنده فایل

کد کاربری 8044

برق هسته ای

مقدمه

از مهمترین منابع استفاده صلح آمیز از انرژی اتمی ، ساخت راکتورهای هسته‌ای جهت تولید برق می‌باشد. راکتور هسته‌ای وسیله‌ای است که در آن فرآیند شکافت هسته‌ای بصورت کنترل شده انجام می‌گیرد. در طی این فرآیند انرژی زیاد آزاد می‌گردد به نحوی که مثلا در اثر شکافت نیم کیلوگرم اورانیوم انرژی معادل بیش از 1500 تن زغال سنگ بدست می‌آید. هم اکنون در سراسر جهان ، راکتورهای متعددی در حال کار وجود دارند که بسیاری از آنها برای تولید قدرت و به منظور تبدیل آن به انرژی الکتریکی ، پاره‌ای برای راندن کشتیها و زیردریائیها ، برخی برای تولید رادیو ایزوتوپوپها و تحقیقات علمی و گونه‌هایی نیز برای مقاصد آزمایشی و آموزشی مورد استفاده قرار می‌گیرند. در راکتورهای هسته‌ای که برای نیروگاههای اتمی طراحی شده‌اند (راکتورهای قدرت) ، اتمهای اورانیوم و پلوتونیم توسط نوترونها شکافته می‌شوند و انرژی آزاد شده گرمای لازم را برای تولید بخار ایجاد کرده و بخار حاصله برای چرخاندن توربینهای مولد برق بکار گرفته می‌شوند.


انواع راکتور اتمی

راکتورهای اتمی را معمولا برحسب خنک کننده ، کند کننده ، نوع و درجه غنای سوخت در آن طبقه بندی می‌کنند. معروفترین راکتورهای اتمی ، راکتورهایی هستند که از آب سبک به عنوان خنک کننده و کند کننده و اورانیوم غنی شده (2 تا 4 درصد 235U) به عنوان سوخت استفاده می‌کنند. این راکتورها عموما تحت عنوان راکتورهای آب سبک (LWR) شناخته می‌شوند. راکتورهای PWR ، BWR و WWER از این دسته‌اند. نوع دیگر ، راکتورهایی هستند که از گاز به عنوان خنک کننده ، گرافیت به عنوان کند کننده و اورانیوم طبیعی یا کم غنی شده به عنوان سوخت استفاده می‌کنند. این راکتورها به گاز - گرافیت معروفند. راکتورهای GCR ، AGR و HTGR از این نوع می‌باشند.

راکتور PHWR راکتوری است که از آب سنگین به عنوان کند کننده و خنک کننده و از اورانیوم طبیعی به عنوان سوخت استفاده می‌کند. نوع کانادایی این راکتور به CANDU موسوم بوده و از کارایی خوبی برخوردار می‌باشد. مابقی راکتورها مثل FBR (راکتوری که از مخلوط اورانیوم و پلوتونیوم به عنوان سوخت و سدیم مایع به عنوان خنک کننده استفاده کرده و فاقد کند کننده می‌باشد) LWGR (راکتوری که از آب سبک به عنوان خنک کننده و از گرافیت به عنوان کند کننده استفاده می‌کند) از فراوانی کمتری برخوردار می‌باشند. در حال حاضر ، راکتورهای PWR و پس از آن به ترتیب PHWR ، WWER ، BWR فراوانترین راکتورهای قدرت در حال کار جهان می‌باشند.

تاریخچه

به لحاظ تاریخی اولین راکتور اتمی در آمریکا بوسیله شرکت "وستینگهاوس" و به منظور استفاده در زیر دریائیها ساخته شد. ساخت این راکتور پایه اصلی و استخوان بندی تکنولوژی فعلی نیروگاههای اتمی PWR را تشکیل داد. سپس شرکت جنرال الکتریک موفق به ساخت راکتورهایی از نوع BWR گردید. اما اولین راکتوری که اختصاصا جهت تولید برق طراحی شده ، توسط شوروی و در ژوئن 1954در "آبنینسک" نزدیک مسکو احداث گردید که بیشتر جنبه نمایشی داشت. تولید الکتریسیته از راکتورهای اتمی در مقیاس صنعتی در سال 1956 در انگلستان آغاز گردید.

تا سال 1965 روند ساخت نیروگاههای اتمی از رشد محدودی برخوردار بود، اما طی دو دهه 1966 تا 1985 جهش زیادی در ساخت نیروگاههای اتمی بوجود آمده است. این جهش طی سالهای 1972 تا 1976 که بطور متوسط هر سال 30 نیروگاه شروع به ساخت می‌کردند بسیار زیاد و قابل توجه است. یک دلیل آن شوک نفتی اوایل دهه 1970 می‌باشد که کشورهای مختلف را بر آن داشت تا جهت تأمین انرژی مورد نیاز خود بطور زاید الوصفی به انرژی هسته‌ای روی آورند. پس از دوره جهش فوق یعنی از سال 1986 تا کنون روند ساخت نیروگاهها به شدت کاهش یافته ، بطوریکه بطور متوسط سالیانه 4 راکتور اتمی شروع به ساخت می‌شوند.

 

 

سهم برق هسته‌ای در تولید برق کشورها

کشورهای مختلف در تولید برق هسته‌ای روند گوناگونی داشته‌اند. به عنوان مثال کشور انگلستان که تا سال 1965 پیشرو در ساخت نیروگاه اتمی بود، پس از آن تاریخ ، ساخت نیروگاه اتمی در این کشور کاهش یافت، اما برعکس در آمریکا به اوج خود رسید. کشور آمریکا که تا اواخر دهه 1960 تنها 17 نیروگاه اتمی داشت، در طول دهه های 1970و 1980 بیش از 90 نیروگاه اتمی دیگر ساخت. این مسئله نشان دهنده افزایش شدید تقاضای انرژی در آمریکاست. هزینه تولید برق هسته‌ای در مقایسه با تولید برق از منابع دیگر انرژی در آمریکا کاملا قابل رقابت می‌باشد.

هم اکنون فرانسه با داشتن سهم 75 درصدی برق هسته‌ای از کل تولید برق خود در صدر کشورهای جهان قرار دارد. پس از آن به ترتیب لیتوانی (73 درصد) ، بلژیک (57 درصد) ، بلغارستان و اسلواکی (47 درصد) و سوئد (48.6 درصد) می‌باشند. آمریکا نیز حدود 20 درصد از تولید برق خود را به برق هسته‌ای اختصاص داده است. گرچه ساخت نیروگاههای هسته‌ای و تولید برق هسته‌ای در جهان از رشد انفجاری اواخر دهه 1960 تا اواسط 1980 برخوردار نیست، اما کشورهای مختلف همچنان درصدد تأمین انرژی مورد نیاز خود از طریق انرژی هسته‌ای می‌باشند.

طبق پیش بینیهای به عمل آمده روند استفاده از برق هسته‌ای تا دهه‌های آینده همچنان روند صعودی خواهد داشت. در این زمینه ، منطقه آسیا و اروپای شرقی به ترتیب مناطق اصلی جهان در ساخت نیروگاه هسته‌ای خواهند بود. در این راستا ، ژاپن با ساخت نیروگاههای اتمی با ظرفیت بیش از 25000 مگا وات در صدر کشورها قرار دارد. پس از آن چین ، کره جنوبی ، قزاقستان ، رومانی ، هند و روسیه جای دارند. استفاده از انرژی هسته‌ای در کشورهای کاندا ، آرژانتین ، فرانسه ، آلمان ، آفریقای جنوبی ، سوئیس و آمریکا تقریبا روند ثابتی را طی دو دهه آینده طی خواهد کرد.

دیدگاههای اقتصادی و زیست محیطی برق هسته‌ای

جمهوری اسلامی ایران در فرآیند توسعه پایدار خود به تکنولوژی هسته‌ای چه از لحاظ تأمین نیرو و ایجاد جایگزینی مناسب در عرصه انرژی و چه از نظر دیگر بهره برداریهای صلح آمیز آن در زمینه‌های صنعت ، کشاورزی ، پزشکی و خدمات نیاز مبرم دارد که تحقق این رسالت مهم به عهده سازمان انرژی اتمی ایران می‌باشد. بدیهی است در زمینه کاربرد انرژی هسته‌ای به منظور تأمین قسمتی از برق مورد نیاز کشور قیود و فاکتورهای بسیار مهمی از جمله مسایل اقتصادی و زیست محیطی مطرح می‌گردند.

 

 

 






تاریخ : سه شنبه 96/4/6 | 9:21 عصر | نویسنده : خلوتگاه | نظرات ()
جریان الکتریکی در فلز از حرکت بارهای منفی (الکترونها) و در نیم رساناها از حرکت بارهای منفی (الکترونها) و بارهای مثبت (حفره ها) ناشی می شود مواد نیم رسانا اعم از سیلیسیوم و ژرمانیوم می توانند بوسیله اتم های ناخالص چنان آلائیده شوند که جریان الکتریکی عمدتاً از الکترونها یا حفره ها شود نیم رساناها گروهی از مواد هستند که رسانایی الکتریکی آنها بین فلزا
دسته بندی برق
فرمت فایل doc
حجم فایل 43 کیلو بایت
تعداد صفحات فایل 32
بررسی مواد نیم رسانا

فروشنده فایل

کد کاربری 8044
سیلیسیوم

 

1-1- مواد نیم رسانا

جریان الکتریکی در فلز از حرکت بارهای منفی (الکترونها) و در نیم رساناها از حرکت بارهای منفی (الکترونها) و بارهای مثبت (حفره ها) ناشی می شود. مواد نیم رسانا اعم از سیلیسیوم و ژرمانیوم می توانند بوسیله اتم های ناخالص چنان آلائیده شوند که جریان الکتریکی عمدتاً از الکترونها یا حفره ها شود. نیم رساناها گروهی از مواد هستند که رسانایی الکتریکی آنها بین فلزات و عایق ها قرار دارد. بلور کامل و خالص اغلب نیمه رساناها در صفر مطلق عایق است. ویژگیهای متخصه نیم رساناها این است که رسانایی آنها با تغییر دما، برانگیزش نوری و میزان ناخالص به نحو قابل ملاحظه ای تغییر می کند. این قابلیت تغییر خواص الکتریکی، مواد نیمه رسانا را انتخاب مناسبی برای تحقیق در زمینه قطعات الکترونیکی ساخته است. نیم رساناها رساناهای الکترونیکی هستند که مقاومت ویژه آنها در دمای اطاق عموماً در گستره2-10 تا 9 10 واقع است. این گستره در بین مقادیر مقاومت ویژه رساناهای خوب 6-10 و عایقها 14 10 تا 22 10 قرار دارد ]1[ و ]2[

مقاومت ویژه نیم رساناها می تواند قویاً به دما وابسته باشد، وسایلی از قبیل، ترانزیستورها، یکسوسازها، مدوله کننده ها، آشکارسازها، ترمیستورها و فوتوسلها براساس ویژگیهای نیم رساناها کار می کنند. رسانندگی یک نیم رساناها بطور کلی نسبت به دما، روشنایی، میدان مغناطیسی، مقدار دقیق ناخالصی اتم ها حساسیت دارد. مطالعه مواد نیم رسانا در اوایل قرن نوزدهم شروع شده در طول سالها نیم رساناهای فراوانی مورد مطالعه قرار گرفته اند.

جدول 1 قسمتی از جدول تناوبی مربوط به نیمه رساناها را نشان می دهد. نیم رساناهای عنصری یعنی آنهایی که از نمونه های منفرد اتم ها تشکیل می شوند، نظیر سیلیسیوم (Si) و ژرمانیوم (Ge) را می توان در ستون IV پیدا نمود. مع ذلک، نیم رساناهای مرکب بیشماری از دو یا تعداد بیشتری عنصر تشکیل می گردند. برای مثال گالیوم آرسنید (GaAs) یک ترکیب III-V است که ترکیبی از گالیوم از ستون III و آرستیک (As) از ستون V می باشد. در جدول 2 لیست بعضی از نیم رساناهای عنصری و مرکب ارائه شده است. ]1[


جدول 1- قسمتی از جدول تناوبی مربوط به نیم رسانه ها

دوره

ستون II

ستون III 

IV 

V 

VI 

2

 

B

C

N

 

 

 

بور

کربن

نیتروژن

 

3

Mg

Al

Si

P

S

 

منیزیم

آلومینیوم

سیلیسیوم

فسفر

گوگرد

4

Zn

Ga

Ge

As

Se

 

روی

گالیوم

ژرمانیوم

آرسنید

سلنیم

5

Cd

In

Sn

Sb

Te

 

کادمیوم

ایندیم

قلع

آنتیموان

تلوریم

6

Hg

 

Pb

 

 

 

جیوه

 

سرب

 

 

 

جدول 2- نیمه رسانای عنصری و مرکب

عنصر

IV-IV ترکیب

III-V ترکیب

II-VI ترکیب

IV-VI ترکیب

Si

Sic

AlAs

CdS

PbS

Ge

 

AlSb

CdSe

PbTe

 

 

B-N

CdTe

 

 

 

GaAs

ZnS

 

 

 

GaP

ZnSe

 

 

 

GaSb

ZnTe

 

 

 

In-As

 

 

 

 

In-P

 

 

 

 

In-Sb

 

 

 

نیم رساناهای بسیار خاص از خود رسانندگی ذاتی نشان می دهند که از رسانندگی ناخالصی در نمونه های با خلوص کمتر متمایز است.

در گستره دمای ذاتی ویژگیهای الکتریکی نیم رسانا در اثر ناخالصی های بلور اساساً تغییر نمی کند. یک طرح نواری الکترونی که به رسانندگی ذاتی منجر می شود.

شکل 1-1- طرح نواری برای رسانندگی ذاتی در نیم رسانا. در صفر کلوین رسانندگی صفر است، زیرا تمام حالتهای نوار ظرفیت پر و تمام حالتهای نوار رسانش خالی اند. با افزایش دما الکترونها بطور گرمایی از نوار ظرفیت به نوار رسانش برانگیخته و در آنها متحرک می شوند.

نوار رسانش در صفر مطلق خالی است و به اندازه گاف انرژیاز نوار ظرفیت فاصله دارد. گاف نواری اختلاف انرژی بین پائین ترین نقطه نوار رسانش و بالاترین نقطه نوار ظرفیت است. پائین ترین نقطه نوار رسانش را لبة نوار رسانش می نامند. بالاترین نقطه در نوار ظرفیت به لبه نوار ظرفیت موسوم است.

با افزایش دما، الکترونها به گونه گرمایی از نوار ظرفیت به نوار رسانش برانگیخته می‌شوند (شکل 2-1). هم الکترونهای نوار رسانش و هم اربیتالهای خالی یا حفره های به جا مانده در نوار ظرفیت، در رسانندگی الکتریکی شرکت می کنند. ]2[

(ب) سیلیسیوم، در شرایط ذاتی تراکم حفره ها با تراکم الکترونها برابر است. در یک دمای مفروض تراکم ذاتی در Ge بیشتر از Si است، زیرا گاف انرژی ذر (ev67/0) باریکتر از (ev12/1) Si است.

1-2- سیلیسیوم

در اوایل دهه 1950 ژرمانیوم مهمترین ماده نیمه رسانا بود مع ذلک ثابت شد که ژرمانیوم برای بسیاری از کاربردها مناسب نمی باشد. زیرا قطعات ژرمانیوم حتی در دماهایی که بطور معتدل بالا می روند نشت جریان بالایی را نشان می دهند به علاوه اکسید ژرمانیوم در آب قابل حل است و برای ساخت قطعات مناسب نیست، از اوایل دهه 1960 به بعد سیلیسیوم به یک جانشین عملی تبدیل شده است و اینک واقعاً ژرمانیوم را به عنوان یک ماده برای ساخت نیمه هادی از میدان خارج کرده است.

دلیل عمده استفاده از سیلیسیوم این است که قطعات سیلیسیومی جریان نشت کمتری را نشان می دهند و اکسید سیلیسیوم با کیفیت بالا را می توان به طور گرمایی رشد داد و از طرف دیگر قطعات سیلیسیوم اصلاح شده خیلی ارزانتر از مواد نیم رسانای دیگر هستند. سیلیسیوم به شکل سیلیکا و سیلیکاتها 25% پوسته زمین را تشکیل می دهد، و سیلیسیوم بعد از اکسیژن از نظر فراوانی دومین ماده است و در حال حاضر، سیلیسیوم یکی از آن عناصر جدول تناوبی است که به مقدار خیلی زیاد مورد مطالعه واقع شده است،و تکنولوژی سیلیسیوم تا کنون دربین تمام تکنولوژیهای نیم رسانایی پیشرفته‌ترین می باشد.

بسیاری از نیم رساناهای مرکب دارای خواص الکتریکی و اپتیکی هستند که سیلیسیوم فاقد آن هاست. این نیم رساناها بویژه گالیوم آرسنید بطور عمده برای کاربردهای موج ریز و نوری مورد استفاده قرار می گیرند. اگرچه ما آنقدر که درباره تکنولوژی سیلیسیوم می دانیم دربارة تکنولوژی نیم رساناهای مرکب نمی دانیم، بخشی از تکنولوژی نیم رساناهای مرکب بخاطر پیشرفت در تکنولوژی سیلیسیوم رشد کرده است.

1-3- ساختار بلوی سیلیسیوم

در یک بلور اتمها به طریق سه بعدی دوره ای آرایش یافته اند. آرایش دوره ای اتمها در بلور شبکه نامیده می شود. در بلو، یک اتم هرگز دور از یک مکان ثابت، منفرد سرگردان نمی باشد. ارتعاشات گرمایی مربوط به این اتم حول این مکان متمرکز می‌شود. برای یک نیم رسانای معین یک یاخته واحد وجود دارد که نماینده تمام شبکه است، با تکرار یاخته واحد در سرتاسر بلور، می توان تمام شبکه را ایجاد نمود. سیلیسیوم دارای یک ساختار شبکه الماسی با ثابت شبکه A 43/5 آنگستروم می باشد. (شکل 3-1) این ساختار متعلق به خانواده بلور مکعبی هست و می توان آن را به صورت دو زیر شبکه مکعبی fcc که در یکدیگر نفوذ کرده اند، مشاهده نمود.

بدین طریق که یک زیر شبکه به اندازه یک چهارم فاصله در راستای قطر مکعب (یعنی تغییر مکانی به اندازه ) نسبت به زیر شبکه دیگر جابجا شده است.

تمام اتمها در شبکه الماسی یکسان هستند و هر اتم در شبکه الماسی با چهار نزدیکترین همسایه که با فاصله مساوی در گوشه های یک چهار وجهی قرار دارند احاطه شده است. (به کره های متصل شده با خط سیاه در شکل 3-1- الف مراجعه شود). به زبان برداری شبکه الماسی یک شبکه مکعبی مرکز وجهی fcc با یک پایه دو اتمی در نقاط و یا به شکل دو شبکه fcc که در امتداد قطر درهم جابجا شده اند.

سلول بسیط شبکه fcc با بردارهای بسیط:

(1-1)

معین می شود. شبکه وارون fcc با ثابت شبکه a یک شبکه مکعبی مرکز حجمی bcc با ثابت شبکه با بردارهای بسیط:

(2-

 






تاریخ : سه شنبه 96/4/6 | 9:21 عصر | نویسنده : خلوتگاه | نظرات ()
<   <<   6   7   8   9   10   >>   >
لطفا از دیگر مطالب نیز دیدن فرمایید
طول ناحیه در قالب بزرگتر از حد مجاز
.: Weblog Themes By M a h S k i n:.